Grid Portal System Based on GPIR

FANG Juan1, Geoffrey FOX2
1 College of Computer Science, Beijing University of Technology,
100022 Beijing, China, fangjuan@bjut.edu.cn
2 Community Grids Lab, Indiana University
Bloomington, IN 47404, USA, gcf@indiana.edu
Abstract. Grid portal is the bridge between Grid and user. In this paper a Grid portal system is set up based on GPIR of GridPort. It combines with Mobile Agent to get the data of grid monitoring system, the data will be stored in GPIR, and then displayed by Grid portal. The Grid portal system provides an efficient means to user for utilizing grid resources. The user can customize the application by portlet framework.
Keywords. Grid portal, GPIR, Portlet, Mobile Agent
1 Introduction
The grid environment is complex, including a variety of distributed resources, resources scheduling and allocation, security, different interfaces and so on. A Grid portal is an application server that can provide a secure online environment for gathering information about grid services and resources. It also can provide the tools for utilizing these grid services and resources to perform useful tasks. It is convenient for user to view the visualized resources and use the computing capability of the Grid. Scientists can perform a plenty of Grid operations by the customizable interface which designed by a Grid portal, such as job submission, file management, proxy management and querying of grid information.
There are many projects about Grid portal, such as GridPort, GPDK, Legion Portal, GridSphere, User-friendly Web GUI and advanced grid services are provided. Grid portal can provide a service uniform platform for user, and integrate the services. The user can select different services according to the demand, the Grid portal can conceal the details of grid resources furthest for users, and then the users can utilize and harmonize the resources adequately.
2 The Basic Framework of Grid Portal
Generally, Grid portal can be classified to three classes, application-oriented portal, user-oriented portal and development-oriented portal. Application-oriented portal aims at concrete grid computing for various area of study; it’s convenient to the users for computing simulation. The function of portal is close relative to the application content, so it should be customized in advance. User-oriented portal is focused on special research center or community; it can provide services to them. Development-oriented portal delicates to provide excellent portal services, using this kind of portal is convenient to do the application-oriented and user-oriented development. In the actual application, it is not distinct of the difference among these three portals, there are three layers architecture in the portals. The three layers are user interface, API interface, and intermediate layer which can integrate these two layers.
Grid portal uses the Globus, the de facto standard of grid computing. To be the develop toolkit, it is the portal for the user to use grid resources, it also can manage a great deal different resources in the back-end grid[1].
Figure 1 shows the basic model of Grid portal[2]. We can classify it into three layers from the point view of service.

[image: image1]
Figure 1. Grid Portal Model

The first layer is user layer, it can provide the interface for user. User layer is responsible for displaying the portal content, it can be web browser, or other desktop tools. Generally, the portal page window is composed of many portlet components. Each portlet has its own content display, Portal user layer aggregates all the contents to final page for the user. The second layer is service layer, including authentication, job management service, information service, file service, security service. When the user’s request gets to Grid portal, it can schedule special portlet to answer the request, the portlet will alternate with the Grid service by different ways. The third layer is resource layer, including remote compute, data and application resources. Service layer commits the Grid I/O operation to relevant grid resource, and accept the executed result from grid resources. The raw data returned from the resource layer are processed in the Grid portal, and then returned to user browser as HTML form which can be understood easily.
We can make out from the model that the three layers can cooperate with each other, they can complete the services of Grid together. The architecture embodies the idea of service, and the user can see a set of service. The user can add or delete the interrelated portlet to choose different services. The implementation and access of service are separate, so the access to grid resources do not need to depend on the platform, the user only need to know the service interface, they do not need to care about the method of implementation and access.
3 GPIR
We use the GridPort as the basic framework. Grid Portal Toolkit(GridPort) is a toolkit, it can be used to develop the portal which based on web, and it can create the application on the infrastructure of the distributed and grid computing. GridPort integrates the grid web services that provided by other grid software, such as Globus, Network Weather Service, it can utilize the grid resources easily and efficiently.
The current version of GridPort is 4.0, developed by TACC(Texas Advanced Computing Center). It comprises a set of portlet interfaces and services in the portal layer that provide access to a wide range of back-end grid and information services provided by lower-level grid technologies including the Globus Toolkit, the Grid portal Information Repository (GPIR), Comprehensive File Transfer Service(CFT) and Condor. The GPIR and CFT web services have been extracted from GridPort and can now be installed separately. GPIR provides a place to store data about your grid that is readily accessible to a portal application. GPIR uses the relational database to store and retrieve the grid data with Web service interface, the database may be HypersonicSQL or PostgreSQL, and they are used for caching and archiving grid data. There are two kinds of data in the database, dynamic data and static data[3]. The dynamic data are machine-oriented data which are updated via a Web Service called the "GPIRIngester", including machine load, status, the number of running jobs and queue information. The dynamic data are read via the "GPIRQuery" Web Service. The static data are managed through the GPIR Administration client which is a standard web application accessed via a browser, including host names, the number of CPU, memory, disk space and the data login VO, the data are updated via the GPIR Web admin client. Totally there are two ways to get data into GPIR, the Ingester web and the administration client. The database transactions are managed by Web Services. First, information providers push data to the Ingester Web Service; Second, Clients such as portals pull data from the Query Web Service.
There are four views for information which are provided to the user via the GPIR browser included in the demonstration portlet[3]. They are system, machine, grid, and historical view. The systems view summarizes both static and dynamic data for each resource in a virtual organization as a unit, presenting to the user the total capability of the grid. The machine view displays machine specific information to the user. The grid view presents information about a virtual organization as a unit, presenting to the user the total capability of the grid. The historical view allows a user to see a graphical interface of archived grid data such as the load of a system over a day, week or month.
There are many projects are using GPIR, such as UT(University of Texas) Grid User Portal, TeraGrid User Portal, GridPort Demo Portal, OGCE/NMI Portals. The goal for GPIR is to aggregate and cache grid and portal related data collected by other technologies (e.g., MDS, NWS, etc.) and make it available via a single tool using standard Web service queries. GPIR also includes some ‘custom providers’ to provide data not collected by any current grid information system but needed by Grid portals and applications developers.
 4 The Grid Portal Architecture Based on GPIR
We designed a Grid portal architecture based on GPIR, it has three layers[4]. The bottom layer is Information Providers, called resource layer; the middle layer is database, the top layer is client layer. The resource layer provides the resources, it is on the Grid environment. The resources of bottom layer will provide the number of resources, status, and relational information of processing capability to portal and application, the data of grid can be provided by the service to user. The data will be stored to database. In the architecture, resource layer includes the data from the grid resource monitoring system, so we introduced Mobile Agent to grid resource monitoring, the data from the Mobile Agent will be stored into GPIR, and then displayed to the clients via Grid portal. Fig 2 shows the architecture.

[image: image2]Figure 2. Grid Portal Architecture based on GPIR
Data is extracted from GPIR using the Query web service is a query interface to GPIR. It allows you to Query GPIR by a single resource or by a Virtual Organization. JDBC is used to connect the database to User Interface. Almost all the operating system support Java, JDBC is also provided by Java.
One of the databases used by GPIR is HypersonicSQL[5]. It’s an open-source project with its roots in Switzerland. Hypersonic SQL is written entirely in Java, so it will run on all the Java platforms; it is compact, weighing only 155 K and, since it is an open source project, there is no per CPU license. Hypersonic SQL shines for standalone or desktop applications where its small size makes the difference. Furthermore, since it implements the JDBC interface, it provides some compatibility with existing code. For all its qualities, Hypersonic SQL is not multithreaded so it is not appropriate for server-side developments. Also, it is limited to a subset of SQL (most notably, no foreign keys). Perhaps more significantly, it lacks the backup and management tools required for mission-critical applications. To summarize, Hypersonic SQL is well adapted for standalone desktop applications written in Java. It is also useful for testing and prototyping.

The other database is PostgreSQL[6]. It is originally a database management system that developed at the University of California at Berkeley. The concept of object-relational database is even earlier than many commercial databases. It supports the SQL92/SQL3 language, it also has the integrality of transaction, type of expansibility and so on. PostgreSQL is the most advanced open source database server. It is a professional strength DBMS with triggers, stored procedures, a programming language, and naturally full SQL support. The Postgres system consists of three top level components: Backend, Postmaster, and Frontend. The backend is the interface to the database itself. The backend is what handles SQL queries. Every SQL query spawns a new backend process.
The frontend is what interacts with the user. It could be a PHP or Perl program, or it could be the psql data administration utility. When you create a frontend, you use an API to make actual calls to the backend. There are such API's for all major languages -- sometimes multiple API's for a single language (Perl). The API's are free.
The Postmaster is the supervisor daemon. When a frontend process requests a connection, the Postmaster sets up a backend process to handle the connection. After that, the frontend/backend pair cooperates without the need for further Postmaster intervention.
The user can access all the services provided by Grid portal by Web Browser or other application. When the request of user gets to Grid portal, it can schedule special portlet to respond the request.
In this architecture, we have a special Information Provider, that is, Grid Resource Monitoring system. This system is based on mobile agent, it combines mobile agent technology with grid technology, exert the advantages of the two technologies to reduce the network traffic during the grid resource discovery and monitoring process. We use Aglet platform to develop the system, Aglet is based on Java language which developed by IBM, it provides a simple and comprehensive mobile agent programming model, it can provide dynamic and effective communicated mechanism. The mobile agents include RegisterAgent, SensorAgent, LDAPAgent,UpdateAgent, QueryAgent and so on. In the period of effective time, Query Agent can read the resource information directly. Otherwise, it needs dispatch mobile agent to corresponding host to get the resource information again, local directory records the result information each time via cache mechanism. This architecture provides advantaged condition for achieving effective information of database.
5 Comparison
The Grid Portal Toolkit (GridPort) is a collection of technologies designed to aid in the development of science portals on computational Grids: user portals, applications interfaces, and education portals[7]. The two key components of GridPort are the Web portal services and the application APIs. The GridPort modules are based on commodity Internet and Web technologies as well as existing Grid services and applications. As Web technologies are easy to use and pervasive, client portals based on GridPort are accessible through any Web browser irrespective of location. By using the GridPort toolkit, application programmers can extend the functionality supported by the HotPage computational resource portal. A user can also customize Web pages and program portal services with a minimal knowledge of Web technologies.

The GridPort system has several excellent features[8]: the software is written in Perl/CGI, it is portable and runs on most webservers; it supports single login between multiple portals; it is flexible and adaptable; it is easy to support and modify; and portals built with it may run across multiple sites and organizations. The NPACI GridPort Toolkit is a simple, robust, and flexible system. The GridPort software can be extended to support the web-services architecture that is being developed for commercial purposes and implemented in commercial technologies such as Jxta, SOAP, and WSDL. The GridPort system is a more appropriate system to enable Grid participation for a significant number of individual users and small projects. GridPort-based portals require no software downloads or configuration changes on the client side, and run on common web browsers. GridPort is relatively easy to install, and client portal developers can download to build portal systems with minimal programming expertise.
There are a variety of projects are web-based interfaces to a distributed set of HPC resources. They are designed to provide transparent access to distributed computing environments such as GridSpeed, Gateway, and GPDK.
GridSpeed[9] is a grid portal hosting server that automatically generates and publishes a customized web interface to the grid for applications, with minimal effort required from the user. The GridSpeed system has proven to be flexible and robust enough to allow scientists to make their applications accessible on the web in a straightforward manner. Compare it with GridPort, GridSpeed anticipate that the reduced cost and time associated with creating and deploying these portals. GridSpeed should make portal development easier and more appealing to scientists who which to migrate their applications to the Grid.
Gateway[10] employs a programming model that is implemented as a virtual metacomputer. Gateway plans to use Globus to access HPC resources, but Gateway requires that a Gateway server run on each HPC system. GridPort avoids this complexity by using the web server to process and build Globus commands and then communicate directly with the Globus processes on the HPC systems.

The Grid Portal Development Kit (GPDK)[11] facilitates the development of Grid portals and provides several key reusable components for accessing various Grid services. The Grid Portal Development Kit leverages off existing Globus/Grid middleware infrastructure as well as commodity web technology including Java Server Pages and servlets. It’s a Java Servlet implementation with many similar functions to those of GridPort.
Another area of future development is in task composition. Many portals would like to specify Grid or portal operations as tasks and be able to combine tasks together to create a work flow system for an entire calculation involving staging data, running a simulation and migrating output data to a storage system.

6 The Implementation and Deployment of Portlet
Grid portal can provide the interface of job commit to user for executing task, the user can commit it to specific server according to the job file. Portlets is managed by portlet container based on Java, it can process request and generate dynamic content. Portal uses portlets as the user interface component, it also provides a presentation layer to information system. The object of JSR168 cooperates with Portlets and Portals. The specification defines the agreement between Portlet and Portlet container. The Portlet APIs are used to do the job of individuation, presentation, and security. A portlet container runs portlets and provides them with the required runtime environment. A portlet container contains portlets and manages their life cycles. It also provides persistent storage mechanisms for the portlet preferences. A portlet container receives requests from the portal to execute requests on the portlets hosted by it. A portlet container is not responsible for aggregating the content produced by the portlets; the portal itself handles aggregation. A portal and a portlet container can be built together as a single component of an application suite or as two separate components of a portal application.

[image: image3]
Figure 3 The Deployment of Portlet
The portlet container can leverage the servlet container's functionality, upon which the portlet container is built. To accomplish that, the portlet container must inject servlet artifacts into each portlet-application war file, as Figure 3 shows[12]. The portlet component, Deployment, takes the original war file, then injects a new or modified web.xml and a servlet to wrap each portlet and uses it as a calling point. Then the portlet deployment passes the modified war file to the application server deployment, which deploys it into the application server's system. During the portlet's invocation, the portlet container calls the injected servlet as an entrance point into the deployed portlet war file. Portlet is similar to servlet, used to process the transaction logic in the MVC architecture. The content of portlet can congregate to a portal page with other portlets. The portlet container manages a portlet life cycle. Grid portal corresponds to portlet container here, including the portlets of various applications. Grid portal runs portlets, it provides them the run environment that they request, and provides permanent storage mechanism to portlets for the selection of preferences. The process of deployment is that the row war file is obtained by portlet components, and then writes a new or modified web.xml, they will be packaged with a servlet. The portlet will be deployed to application server by modified war file.
User can customize the grid application by the need, and choose different service provider and service type. When the user wants to get relevant grid service, the corresponding portlet can be added. The user can choose different service providers to create grid service instance dynamically.
6 Conclusion
Grid portal system provides a visualized view and the ability of accessing grid resources for users. The user needn’t care about the change of low-bottom grid system, and then the user job will not be affected too much. The design of this paper is based on the architecture of GPIR, so it avoids the risk of recreating architecture, and it also has much more effective improve.
Future work on the Grid portal system includes enhancing capabilities of existing Grid portal, and extending its function. Another area of future development is to make the VO Portal more detailed. We also can implement the grid resource management and schedule on Grid portal.
References

1 Atif Shahab, Danny Chuon etc. Grid Portal Interface for Interactive Use and
 Monitoring of High-Throughput Proteome Annotation. http://www.sdsc.edu/pb/

 papers/grid2.pdf
2 Lifish Chen. Introduction to Grid Portal. http://www.chinagrid.net/grid/paperppt/USTC
3 Maytal Dahan, mary Thomas, Eric Roberts, Akhil Seth, etc. Grid Portal Toolkit

 3.0(GridPort) . http://gridport.net/main/pubs.html
4 http://gridport.net/services/gpir/arch.html
5 http://www.javaworld.com/javaworld/jw-09-2003/images/jw-0905-portlet2f2.jpg6
6 http://www.postgresql.org/files/documentation/books/aw_pgsql/node3.html

7 Mark Baker, Rajkumar Buyya, Domenico Laforenza. Grids and Grid technologies for wide-

 area distributed computing. SOFTWARE—PRACTICE AND EXPERIENCE Softw.
 Pract. Exper. 2002; (in press) (DOI: 10.1002/spe.488)

8 Thomas, M. P., Mock, S., Dahan, M., Mueller, K., Sutton, D., The GridPort Toolkit: a
 System for Building Grid Portals. Proceedings of the Tenth IEEE International

 Symposium on High Performance Distributed Computing, August, 2001.
9 Toyotaro Suzumura, Hidemoto Nakada, Satoshi Matsuoka, Henri Casanova.
 GridSpeed: A Web-based Grid Portal Generation Server.
 http://grail.sdsc.edu/papers/suzumura_hpcasia04.pdf

10 Akarsu, G. Fox, T. Haupt, A. Kalinichenko, K. Kim, P. Sheethalnath, and C. Youn.
 Using Gateway System to provide a desktop access to high performance

 computational resources. Proceedings of the Eight IEEE International Symposium on

 High Performance Distributed Computing, August, 1999.

11 Jason Novotny, The Grid Portal Development Kit.

 http://aspen.ucs.indiana.edu/gce/C531gcenovotny/c531paper.pdf
12 Benoît Marchal .Hypersonic SQL: A Desktop Java Database.

 http://www.developer.com/db/article.php/629261

X Classes

Resources

Deployment

X Classes

Resources

Modified Portlet

WAR File

Classes

Resources

Original Portlet

WAR File

Deployment

Invokation

Classloader

Portal Servlet

（Core）

Portal Server WAR File

Application Server

JDBC

User Interface

GPIR

(Hypersonic SQL,

PostgreSQL)

The Grid –Remote compute,

data and application resources

MyProxy

Certificate

Server

Other Desktop Tools

Users

Browser

Users Desktop machine

Security Service

File Service

Information

Service

Job management

Service

Authentication

Service

Portal Server

VO Portal

VO Portal

VO Portal

VO Portal

Query

Ingester

MDS

OGSA

HPC

RESOURCES

GRID

MONITOR

SYSTEM

Java Client

Perl Client

Information Providers

DB

Clients

Portals

Portlets

Agent-1

Agent-2

Agent-n

…

SOAP-XML

SOAP-XML

PAGE
1

